Generalized classical Albert-Zassenhaus Lie algebras
نویسندگان
چکیده
منابع مشابه
Classical Lie algebras
1 Classical Lie algebras A Lie algebra is a vector space g with a bilinear map [, ] : g× g → g such that (a) [x, y] = −[y, x], for x, y ∈ g, and (b) (Jacobi identity) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0, for all x, y, z ∈ g. A bilinear form 〈, 〉 : g× g → C is ad-invariant if, for all x, y, z ∈ g, 〈adx(y), z〉 = −〈y, adx(z)〉, where adx(y) = [x, y], (1.1) for x, y,∈ g. The Killing form is ...
متن کاملGraphs for Classical Lie Algebras
A nonzero element x of a Lie algebra L over a field F is called extremal if [x, [x,L]] ⊆ Fx. Extremal elements are a well-studied class of elements in simple finite-dimensional Lie algebras of Chevalley type: they are the long root elements. In [CSUW01], Cohen, Steinbach, Ushirobira and Wales have studied Lie algebras generated by extremal elements, in particular those of Chevalley type. The au...
متن کاملRichardson Elements for Classical Lie Algebras
Parabolic subalgebras of semi-simple Lie algebras decompose as p = m⊕ n where m is a Levi factor and n the corresponding nilradical. By Richardsons theorem [R], there exists an open orbit under the action of the adjoint group P on the nilradical. The elements of this dense orbits are known as Richardson elements. In this paper we describe a normal form for Richardson elements in the classical c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1985
ISSN: 0021-8693
DOI: 10.1016/0021-8693(85)90080-8